Backyard Nature's Direct Feed from
The Geology Society of America's latest issue of

Excerpts from the  February 25th, 2017 issue

Local glaciation in West Greenland linked to North Atlantic Ocean circulation during the Holocene

Recent observations indicate that ice-ocean interaction drives much of the recent increase in mass loss from the Greenland Ice Sheet; however, the role of ocean forcing in driving past glacier change is poorly understood. To extend the observational record and our understanding of the ocean-cryosphere link, we used a multi-proxy approach that combines new data from proglacial lake sediments, 14C-dated in situ moss that recently emerged from beneath cold-based ice caps, and 10Be ages to reconstruct centennial-scale records of mountain glacier activity for the past ~10 k.y. in West Greenland. Proglacial lake sediment records and 14C dating of moss indicate the onset of Neoglaciation in West Greenland at ca. 5 ka with substantial snowline lowering and glacier expansion at ca. 3.7 ka followed by additional ice expansion phases at ca. 2.9, ca. 1.7, and ca. 1.4 ka and during the Little Ice Age. We find that widespread glacier growth at ca. 3.7 ka in West Greenland coincides with marked cooling and reduced strength of the West Greenland Current in Disko Bugt. The transition to cooler ocean conditions at ca. 3.7 ka identified in Disko Bugt is registered by marine proxy data farther afield in East Greenland and on the northwestern Icelandic shelf, implying large-scale paleoceanographic changes across the North Atlantic during this interval. The similarity between glacier change on West Greenland and multiple marine and terrestrial records across the North Atlantic suggests that glaciers are strongly influenced by changes in ocean circulation and consequently implies that the ocean-cryosphere teleconnection is a persistent feature of the Arctic system.

Pyritized in situ trilobite eggs from the Ordovician of New York (Lorraine Group): Implications for trilobite reproductive biology

Despite a plethora of exceptionally preserved trilobites, trilobite reproduction has remained a mystery. No previously described trilobite has unambiguous eggs or genitalia preserved. This study reports the first occurrence of in situ preserved eggs belonging to Triarthrus eatoni (Hall, 1838) trilobites from the Lorraine Group in upstate New York, USA. Like other exceptionally preserved trilobites from the Lorraine Group, the complete exoskeletons are replaced with pyrite. The eggs are spherical to elliptical in shape, nearly 200 µm in size, and are clustered in the genal area of the cephalon. The fact that the eggs are smaller than the earliest-known trilobite ontogenetic (protaspis) stage suggests that trilobites may have had an unmineralized preliminary stage in their ontogeny, and that the protaspis shield formed only after hatching. The eggs are only visible ventrally with no dorsal brood pouch or recognized sexual dimorphism. The location of the eggs is consistent with where modern female horseshoe crabs release their unfertilized eggs from the ovarian network within their head. Trilobites likely released their gametes (eggs and sperm) through a genital pore of as-yet unknown location (likely near the posterior boundary of the head). If the T. eatoni reproductive biology is representative of other trilobites, they spawned with external fertilization, possibly the ancestral mode of reproduction for early arthropods. Because pyritization preferentially preserves the external rather than internal features of fossils, it is suggested that there is likely a bias in the fossil record toward the preservation of arthropods that brood eggs externally: arthropods that brood their eggs internally are unlikely to preserve any evidence of their mode of reproduction.

CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape

Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.

Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation

Various geochemical records suggest that atmospheric O2 increased in the Ediacaran (635–541 Ma), broadly coincident with the emergence and diversification of large animals and increasing marine ecosystem complexity. Furthermore, geochemical proxies indicate that seawater sulfate levels rose at this time too, which has been hypothesized to reflect increased sulfide oxidation in marine sediments caused by sediment mixing of the newly evolved macrofauna. However, the exact timing of oxygenation is not yet understood, and there are claims for significant oxygenation prior to the Ediacaran. Furthermore, recent evidence suggests that physical mixing of sediments did not become important until the late Silurian. Here we report a multiple sulfur isotope record from a ca. 835–630 Ma succession from Svalbard, further supported by data from Proterozoic strata in Canada, Australia, Russia, and the United States, in order to investigate the timing of oxygenation. We present isotopic evidence for onset of globally significant bacterial sulfur disproportionation and reoxidative sulfur cycling following the 635 Ma Marinoan glaciation. Widespread sulfide oxidation helps to explain the observed first-order increase in seawater sulfate concentration from the earliest Ediacaran to the Precambrian-Cambrian boundary by reducing the amount of sulfur buried as pyrite. Expansion of reoxidative sulfur cycling to a global scale also indicates increasing environmental O2 levels. Thus, our data suggest that increasing atmospheric O2 levels may have played a role in the emergence of the Ediacaran macrofauna and increasing marine ecosystem complexity.

Crustal sequestration of magmatic sulfur dioxide

Volcanism is responsible for copious discharge of sulfur-bearing magmatic gases. A dominant sulfur-bearing species is SO2, yet sulfite (S4+) minerals are rare in geological settings, testifying to the reactivity of SO2. Disproportionation of SO2 to reduced (sulfide), neutral (elemental sulfur), and oxidized (sulfate) species is one expression of this reactivity. Previous studies of SO2 disproportionation reactions have focused on low-pressure, low-temperature conditions involving SO2 gas and liquid water, such as those close to volcanic vents or in water-free gas systems. However, release of magmatic volatiles in volcanic systems can occur at depth where hot magmatic gas meets crustal rocks ± pore fluids. We investigate the viability of such high-pressure reactions with experiments in which SO2 gas is reacted with a mixture of calcite and a metal-bearing saline fluid at 1.0–1.5 kbar pressure and 400–800 °C. At all temperatures, the calcite-bearing experiments produced anhydrite and sulfide. In the experiment where calcite was replaced by quartz, no sulfide was produced, establishing that Ca is a crucial component of this reaction. We show that extensive production of anhydrite and sulfide through calcite-mediated SO2 disproportionation takes place on time scales of just a few hours. This could occur where hot magmatic SO2 gas encounters magmatic brines in igneous rocks, basinal brines within sedimentary rocks, or calcium-bearing saline groundwaters.

Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon

We reconstruct the rise of a segment of the southern flank of the Himalaya-Tibet orogen, to the south of the Lhasa terrane, using a paleoaltimeter based on paleoenthalpy encoded in fossil leaves from two new assemblages in southern Tibet (Liuqu and Qiabulin) and four previously known floras from the Himalaya foreland basin. U-Pb dating of zircons constrains the Liuqu flora to the latest Paleocene (ca. 56 Ma) and the Qiabulin flora to the earliest Miocene (21–19 Ma). The proto-Himalaya grew slowly against a high (~4 km) proto–Tibetan Plateau from ~1 km in the late Paleocene to ~2.3 km at the beginning of the Miocene, and achieved at least ~5.5 km by ca. 15 Ma. Contrasting precipitation patterns between the Himalaya-Tibet edifice and the Himalaya foreland basin for the past ~56 m.y. show progressive drying across southern Tibet, seemingly linked to the uplift of the Himalaya orogen.

Fault-controlled dolomitization in a rift basin

There are numerous examples of fault-controlled, so-called hydrothermal dolomite (HTD), many of which host economic mineral deposits or hydrocarbons, but there remains a lack of consensus as to how they form. In particular, multiple phases of diagenetic overprinting can obscure geochemical fingerprints. Study of a Cenozoic succession with a relatively simple burial history here provides new insights into the development of differentially dolomitized beds. The Hammam Faraun fault (HFF) block within the Suez Rift, Egypt, hosts both massive and stratabound dolostone bodies. Non-fabric-selective massive dolostone is limited to the damage zone of the fault, while fabric-selective stratabound dolostone bodies penetrate nearly 2 km into the footwall. Oligo-Miocene seawater is interpreted to have been drawn down discrete faults into a deep aquifer and convected upwards along the HFF. Escape of fluids from the incipient HFF into the lower Thebes Formation led to differential, stratabound dolomitization. Once the HFF breached the surface, fluid circulation focused along the fault plane to form younger, massive dolostone bodies. This study provides a snapshot of dolomitization during the earliest phases of extension, unobscured by subsequent recrystallization and geochemical modification. Contrary to many models, stratabound dolomitization preceded non-stratabound dolomitization. Fluids were hydrothermal, but with little evidence for rapid cooling and brecciation common to many HTD bodies. These results suggest that many of the features used to interpret and predict the geometry of HTD in the subsurface form during later phases of structural deformation, perhaps overprinting less structurally complex dolomite bodies.

Location, location, location: The variable lifespan of the Laramide orogeny

The Laramide orogeny had a spatially variable lifespan, which we explain using a geodynamic model that incorporates onset and demise of flat-slab subduction. Laramide shortening and attendant uplift began in southeast California (USA) at ca. 90 Ma, swept to the northeast to arrive in the Black Hills of South Dakota (USA) at ca. 60 Ma, and concluded in South Dakota within ~10 m.y. During subsequent slab rollback, the areal extent of Laramide deformation decreased as the eastern edge of active deformation retreated to the southwest rapidly from ca. 55 to 45 Ma and more slowly from ca. 45 to 40 Ma, with deformation ultimately ceasing in the southwestern part of the orogen at ca. 30 Ma. Geodynamic modeling of this process suggests that changes in the strength of the North America plate and densification of the Farallon plate played important roles in controlling the areal extent of the Laramide orogen and hence the lifespan of the orogenic event at any particular location in western North America.

Accelerating slip rates on the Puente Hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for probabilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accelerated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

Equable end Mesoproterozoic climate in the absence of high CO2

The Proterozoic Eon (2500–542 Ma) appears to have been a warm period bookended by glaciations, despite a 5%–18% reduction in solar output compared to modern during this interval. Radiative-convective climate models suggest that glaciation could have been avoided if pCO2 were 30–300x preindustrial atmospheric levels (PIAL, 280 ppmv). Constraints from late Mesoproterozoic (ca. 1.2–1.0 Ga) microfossil calcification sheaths and paleosol mass balance, however, suggest that pCO2 may have been no higher than 10x PIAL. In the lower oxygen Mesoproterozoic atmosphere, an increased CH4 flux from methanogenic bacteria may have contributed additional greenhouse warming. We use a fully coupled atmosphere-ocean general circulation model (the U.S. National Center for Atmospheric Research Community Earth System Model, CESM) to test whether these pCO2 constraints are consistent with the absence of widespread glaciation inferred from the geologic record. We vary pCO2 and pCH4 between 1400 and 2800 ppmv and 3.5 and 140 ppmv, respectively, using a reconstructed 1.0 Ga paleogeography and solar output reduced by 9%. Our simulations suggest that ice-free conditions can be maintained at 10x PIAL CO2 when CH4 is 140 ppmv. When CH4 is lowered to 28 ppmv at 10x PIAL CO2, or if pCO2 is lowered to 5x PIAL, permanent land snow cover at high and middle latitudes suggests that glaciation would be more extensive than preindustrial conditions, but with warm tropical regions. Global glaciation occurs if pCO2 is reduced below 5x PIAL. Overall, our simulations suggest that an ice-free climate for the Mesoproterozoic (1.6–1.0 Ga) is consistent with the relatively low pCO2 implied from proxies if CH4 or other greenhouse gas concentrations were sufficiently elevated.

Ultrafast magmatic buildup and diversification to produce continental crust during subduction

The processes and fluxes that produce the distinct compositional structure of Earth’s continental crust by subduction remain controversial. The rates of oceanic crust production, in contrast, are well quantified and are generally believed to be faster than those responsible for building magmatic systems in subduction settings. Here we show that a recently recognized crustal section, the 30-km-thick Ordovician Sierra Valle Fértil–Sierra Famatina complex in Argentina, was built magmatically within only ~4 m.y. More than half of the crustal section represents additions from the mantle, and is preserved as mafic igneous rocks and mafic-ultramafic cumulates; the remainder is tonalite to granodiorite with evidence for widespread assimilation from highly melted metasedimentary units. U-Pb zircon geochronology reveals that the construction of the arc was not a simple bottom-up construction process. This continuous exposure of the arc crust allows the quantification of field constrained magmatic addition rates of 300–400 km3 km–1 m.y.–1. These rates are similar to those determined for modern slow-spreading mid-ocean ridges and are of the same magnitude as magmatic addition rates required to build certain large segments of the continental masses such as the Arabian-Nubian shield, among others. The implication is that significant convective removal of arc roots is required over time in order to build the modern continental crust via subduction-related magmatism.

A rapid lake-shallowing event terminated preservation of the Miocene Clarkia Fossil Konservat-Lagerstätte (Idaho, USA)

The world-renowned middle Miocene Clarkia lacustrine deposits (15.4–16.0 Ma) in northern Idaho, United States, known as Fossil Lagerstätten, yield extraordinary fossils that preserve in situ ancient biomolecules and organic biomarkers. The sudden formation of the Clarkia Lake basin by means of the Columbia River Basalt damming the proto–St. Maries River is well documented, but less is known about the tempo and mode of the lake environmental succession which impacted on the preservation of these Fossil Lagerstätten. Here, we present evidence for a previously unrecognized, geologically instantaneous drop in the Clarkia Lake water level, using tetraether-based water-depth proxies from a continuous sedimentary sequence at the classic P-33 site. Terrestrial hydrological conditions inferred from compound-specific hydrogen isotope compositions (D) and tetraether-derived temperature estimates from the same sequence show that the rapid shallowing by >10 m was independent of regional climatic changes. We hypothesize that a volcanic-related geological event was primarily responsible for the rapid reduction of Clarkia Lake water depth—an event that played a decisive role in switching depositional conditions for Clarkia Fossil Lagerstätten from a conservation deposit to a concentration deposit.

What sets the size of current ripples?

Water flowing over sand in fluvial and marine settings often results in the formation of current ripples. Found in modern and ancient deposits on Earth and Mars, ripple stratification records flow directions and fluid properties that are crucial to interpreting sedimentary records. Despite decades of observations of current ripples, there is no universal scaling relation to predict their size or to distinguish them from dunes. Here we use dimensional analysis and a new data compilation to develop a scaling relation that collapses data for equilibrium wavelengths of ripples forming under unidirectional flows. Results show that ripples are larger with more viscous fluids, coarser grains, smaller bed shear stresses, and smaller specific gravity of sediment. The scaling relation also segregates ripples from dunes, highlighting a narrow regime of transitional bedforms that have morphologic properties and sediment transport conditions that overlap with both ripples and dunes. Our analysis shows that previous absolute size–based definitions of ripples and dunes only hold for certain conditions, such as water flows transporting siliciclastic grains on Earth. The new theory allows estimates of ripple sizes in foreign fluids and on other planets, including meter-scale ripples in methane flows on Titan or in viscous brines on Mars.

The Mw 8.3 Illapel earthquake (Chile): Preseismic and postseismic activity associated with hydrated slab structures

The accumulated stress in subduction zones is discharged with earthquake and aseismic activity; the latter is hosted in rheological complex regions, characterized by high pore fluid pressure, and is often accompanied by repeated earthquakes and earthquake swarms. The spatiotemporal analysis of seismic activity can reveal the presence of aseismic transients associated with large earthquakes. Here we study 20 years of seismicity prior to and after the Mw 8.3 earthquake that occurred in A.D. 2015 in central Chile. We identified several earthquake swarms before the main shock and repeating aftershocks at the border of the main slip area. Spatial clustering of the seismic activity shares similar orientation with the main fracture zones observed on the outer rise of the subducting Nazca plate. Our findings suggest that the fracture zones enclosing the rupture are playing a major role in accommodating the pre and post–main shock stress evolution. We further recognize how fracture regions have acted as barriers to the propagation of large earthquakes in the region.

Late Quaternary glacial dynamics and sedimentation variability in the Bering Trough, Gulf of Alaska

Ice dynamics, tectonic setting, and sediment supply are the key parameters controlling the architecture of high-latitude margins and the formation of trough mouth fans (TMFs). Current understanding of these archives of paleo–ice streams is based on studies of ice sheets adjacent to stable, passive margins, while the behavior of active, convergent glacier-influenced margins remains relatively unconstrained. We integrate high-resolution seismic data and chronology from Integrated Ocean Drilling Program Expedition 341 cores in southeast Alaska across the actively converging Yakutat terrane margin to examine the late Quaternary evolution of the Bering Glacier, the largest outlet glacier of the poorly understood Cordilleran Ice Sheet (CIS). We interpret at least eight glacial advances to the shelf break since the end of the mid-Pleistocene transition, showing a more dynamic CIS than hitherto realized. During the past ~130 k.y., the temperate, meltwater-charged Bering Glacier delivered ~925 km3 of sediment to the shelf and slope, providing one of the highest rates of sustained sediment accumulation (5–10 m/k.y.) ever reported globally. Rapid formation of a TMF, reaching ~600 m thick in ~130 k.y., emphasizes the extreme sediment flux that can be produced by wet-based glacial systems, and its critical role in the development of high-latitude margin stratigraphy. TMF formation despite initially steep, tectonically controlled slopes in this active setting reflects an autogenic shift in the evolution of the Bering Trough, suggesting that major transitions between sedimentary regimes need not reflect some externally driven change in climate variability.

A new Early Jurassic (ca. 183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada

Lagerstätten—deposits of exceptionally preserved fossils—offer vital insights into evolutionary history. To date, only three Konservat-Lagerstätten are known from Early Jurassic marine rocks (Osteno, Posidonia Shale, and Strawberry Bank), all located in Europe. We report a new assemblage of exceptionally preserved fossils from Alberta, Canada, the first marine Konservat-Lagerstätte described from the Jurassic of North America. The Ya Ha Tinda assemblage includes articulated vertebrates (fish, ichthyosaurs), crinoids, crustaceans, brachiopods, abundant mollusks (coleoids with soft tissues, ammonites, gastropods, bivalves), wood, and microfossils. Paired bio- and chemostratigraphies show that Lagerstätte deposition occurred during the late Pliensbachian through early Toarcian, capturing the carbon isotope excursion associated with the Toarcian Oceanic Anoxic Event. Therefore, the Panthalassan Ya Ha Tinda biota is coeval with Toarcian Lagerstätten from the Tethys Ocean (Posidonia Shale and Strawberry Bank). Comparisons among these deposits permit new insights into the diversity, ecology, and biogeography of Jurassic marine communities during a time of pronounced biological and environmental change (e.g., expanded subsurface anoxia, warming, and extinctions). They also highlight the possibility that Mesozoic Oceanic Anoxic Events are temporal foci of exceptional preservation.

Flexible and responsive growth strategy of the Ediacaran skeletal Cloudina from the Nama Group, Namibia

The Ediacaran skeletal tubular putative metazoan Cloudina occurs globally in carbonate settings, which both provided lithified substrates and minimized the cost of skeletonization. Habitat and substrate preferences and the relationship of Cloudina to other metazoans have not been fully documented, so we know little as to its ecological demands or community dynamics. In situ Cloudina from the Nama Group, Namibia (ca. 550–541 Ma), formed mutually attached reefs composed of successive assemblages in shallow, high-energy environments, and also communities attached to either stromatolites in storm-influenced deep inner-ramp settings or thin microbial mats in lower-energy habitats. Each assemblage shows statistically distinct tube diameter cohorts, but in sum, Cloudina shows an exponential frequency distribution of diameter size. In reefs, we document a periodicity of size variation, where mean, minimum, and maximum tube diameters vary together and show a systematic increase toward the top of each assemblage. We conclude that most Nama Group Cloudina represent one ecologically generalist taxon with highly variable size, that size was environmentally mediated, and that Cloudina could respond rapidly to periodic environmental changes. While Nama Group skeletal metazoans coexisted with soft-bodied biota, there was no apparent ecological interaction, as they were segregated into lithified carbonate and non-lithified clastic microbial mat communities, respectively. We infer that ecological flexibility allowed Cloudina to form varied communities that colonized diverse carbonate substrates under low levels of interspecific substrate competition. This is in notable contrast to the earliest Cambrian skeletal epibenthos that formed biodiverse reef communities with specialist niche occupancy.

The origin of contractional structures in extensional gneiss domes

The juxtaposition of domains of shortening and extension at different scales in orogens has fueled many debates about driving forces and tectonic interpretations, including timing of deformation. At the orogen scale, gravitational collapse and mass transfer from orogenic plateaux to forelands explain some of these juxtapositions. At a regional scale, structures in gneiss domes are commonly contractional yet are coeval with regional extension and denudation. Here we use three-dimensional numerical experiments to show that crustal flow in orogenic domains does not necessarily conform to plate motion. We document contractional crustal flow associated with the formation of a gneiss dome in an orogenic pull-apart setting where localized extension and crustal thinning focus the exhumation of deep crust. We show that the flow field results in a complex strain pattern in which an extensional strain regime that is collinear with the direction of plate motion is partitioned into the shallow crust, whereas contractional structures and fabrics at a high angle to the direction of imposed transport develop in the deep crust. Advective mass transfer across regions of contrasting yet coeval strain regimes leads to a polyphase tectonic history. We observe structural features remarkably similar to those documented in some natural gneiss domes such as the Montagne Noire, which developed in a dextral pull-apart domain at the southern margin of the French Massif Central.

Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas

Mapping the age and trace element and Sm-Nd isotope compositions of monazite grains from a peraluminous Cretaceous granite using laser ablation–split stream analysis reveals a wide range in Nd isotope and rare earth element (REE) compositions within and between single grains. These data corroborate isotopic variability indicated by Hf isotope analysis of zircon in the same granite sample. The REE variations indicate that monazite grew during fractional crystallization. Hf and Nd isotopes indicate that the granitic magma was generated from at least two distinct Proterozoic sources of approximately the same age: one component that had highly radiogenic initial 176Hf/177Hf and 143Nd/144Nd and a second component that was notably less radiogenic. This study highlights the utility of in situ REE and Sm-Nd isotope data in monazite in magmatic systems. Further, it refines the zircon-based constraints on magmatic processes because of sensitivity of light REEs to fractional crystallization, lower probability of complications owing to inheritance, and smaller analytical volumes required.

Coupling leeside grainfall to avalanche characteristics in aeolian dune dynamics

Avalanche (grainflow) processes are fundamental drivers of dune morphodynamics and are typically initiated by grainfall accumulations. In sedimentary systems, however, the dynamism between grainfall and grainflow remains unspecified because simple measurements are hampered by the inherent instability of lee slopes. Here, for the first time, terrestrial laser scanning is used to quantify key aspects of the grainfall process on the lee (slip face) of a barchan sand dune. We determine grainfall zone extent and flux and show their variability under differing wind speeds. The increase in the downwind distance from the brink of peak grainfall under stronger winds provides a mechanism that explains the competence of large avalanches to descend the entire lee slope. These findings highlight important interactions between wind speed, grainfall, and subsequent grainflow that influence dune migration rates and are important for correct interpretation of dune stratigraphy.

Temperature and volume of global marine sediments

Marine sediments contribute significantly to global element cycles on multiple time scales. This is due in large part to microbial activity in the shallower layers and abiotic reactions resulting from increasing temperatures and pressures at greater depths. Quantifying the rates of these diagenetic changes requires a three-dimensional description of the physiochemical properties of marine sediments. In a step toward reaching this goal, we have combined global data sets describing bathymetry, heat conduction, bottom-water temperatures, and sediment thickness to quantify the three-dimensional distribution of temperature in marine sediments. This model has revealed that ~35% of sediments are above 60 °C, conditions that are suitable for petroleum generation. Furthermore, significant microbial activity could be inhibited in ~25% of marine sediments, if 80 °C is taken as a major thermal barrier for subsurface life. In addition to a temperature model, we have calculated new values for the total volume (3.01 x 108 km3) and average thickness (721 m) of marine sediments, and provide the only known determination of the volume of marine-sediment pore water (8.46 x 107 km3), equivalent to ~6.3% of the volume of the ocean. The results presented here can be used to help quantify the rates of mineral transformations, lithification, catagenesis, and the extent of life in the subsurface on a global scale.

Fossil forest reveals sunspot activity in the early Permian

Modern-day periodic climate pattern variations related to solar activity are well known. High-resolution records such as varves, ice cores, and tree-ring sequences are commonly used for reconstructing climatic variations in the younger geological history. For the first time we apply dendrochronological methods to Paleozoic trees in order to recognize annual variations. Large woody tree trunks from the early Permian Fossil Forest of Chemnitz, southeast Germany, show a regular cyclicity in tree-ring formation. The mean ring curve reveals a 10.62 yr cyclicity, the duration of which is almost identical to the modern 11 yr solar cycle. Therefore, we speculate and further discuss that, like today, sunspot activity caused fluctuations of cosmic radiation input to the atmosphere, affecting cloud formation and annual rates of precipitation, which are reflected in the tree-ring archive. This is the earliest record of sunspot cyclicity and simultaneously demonstrates its long-term stable periodicity for at least 300 m.y.

Forecasting transitions in monogenetic eruptions using the geologic record

Spatial forecasting of volcanism and associated hazards in intraplate monogenetic volcanic fields is subject to large uncertainties in both data and models. We demonstrate a novel logistic regression method for mapping phreatomagmatic-magmatic eruption transition susceptibility using near-surface hydrologic, topographic, and geologic data. The method is illustrated on the Auckland volcanic field, the location of New Zealand’s largest city, Auckland. Environmental factors examined for possible influence included the thickness of water-saturated and porous sediments, substrate type and geology, vent elevation, and distance from the nearest fault. By comparing these factors with the volumes and styles of past eruption sequences, a location-specific eruption sequence forecasting model was constructed, recognizing that larger and/or longer eruptions are more likely to exhaust vent-area sources of water. Estimating volcanic hazard susceptibility in this way allows more effective planning and improved preeruption preparedness between eruptions and during future volcanic crises.

Variation in slip rates on active faults: Natural growth or stress transients?